- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Hu, Hong Hu (1)
-
Wu, Dinghao (1)
-
Xia, Tianrou Xia (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Indirect calls, while facilitating dynamic execution characteristics in C and C++ programs, impose challenges on precise construction of the control-flow graphs (CFG). This hinders effective program analyses for bug detection (e.g., fuzzing) and program protection (e.g., control-flow integrity). Solutions using data-tracking and type-based analysis are proposed for identifying indirect call targets, but are either time-consuming or imprecise for obtaining the analysis results. Multi-layer type analysis (MLTA), as the state-of-the-art approach, upgrades type-based analysis by leveraging multi-layer type hierarchy, but their solution to dealing with the information flow between multi-layer types introduces false positives. In this paper, we propose strong multi-layer type analysis (SMLTA) and implement the prototype, DEEPTYPE, to further refine indirect call targets. It adopts a robust solution to record and retrieve type information, avoiding information loss and enhancing accuracy. We evaluate DEEPTYPE on Linux kernel, 5 web servers, and 14 user applications. Compared to TypeDive, the prototype of MLTA, DEEPTYPE is able to narrow down the scope of indirect call targets by 43.11% on average across most benchmarks and reduce runtime overhead by 5.45% to 72.95%, which demonstrates the effectiveness, efficiency and applicability of SMLTA.more » « less
An official website of the United States government

Full Text Available